Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2313344, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38380843

RESUMO

Due to emerging demands in soft electronics, there is an increasing need for material architectures that support robust interfacing between soft substrates, stretchable electrical interconnects, and embedded rigid microelectronics chips. Though researchers have adopted rigid-island structures to solve the issue, this approach merely shifts stress concentrations from chip-conductor interfaces to rigid-island-soft region interfaces in the substrate. Here, a gradient stiffness-programmed circuit board (GS-PCB) that possesses high stretchability and stability with surface mounted chips is introduced. The board comprises a stiffness-programmed hydrogel substrate and a laser-patterned liquid metal conductor. The hydrogel simultaneously obtains a large stiffness disparity and robust interfaces between rigid-islands and soft regions. These seemingly contradictory conditions are accomplished by adopting a gradient stiffness structure at the interfaces, enabled by combining polymers with different interaction energies and a supercooled sodium acetate solution. By integrating the gel with laser-patterned liquid metal with exceptional properties, GS-PCB exhibits higher electromechanical stability than other rigid-island research. To highlight the practicality of this approach, a finger-sensor device that successfully distinguishes objects by direct physical contact is fabricated, demonstrating its stability under various mechanical disturbances.

2.
ACS Nano ; 18(3): 2312-2324, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190550

RESUMO

Stable outdoor wearable electronics are gaining attention due to challenges in sustaining consistent device performance outdoors, where sunlight exposure and user movement can disrupt operations. Currently, researchers have focused on integrating radiative coolers into wearable devices for outdoor thermal management. However, these approaches often rely on heat-vulnerable thermoplastic polymers for radiative coolers and strain-susceptible conductors that are unsuitable for wearable electronics. Here, we introduce mechanically, electrically, and thermally stable wearable electronics even when they are stretched under sunlight to address these challenges. This achievement is realized by integrating a polydimethylsiloxane nanofibrous cooler and liquid metal conductors for a fully stable wearable device. The thermally robust architecture of nanofibers, based on their inherent properties as thermoset polymers, exhibits excellent cooling performance through high solar reflection and thermal emission. Additionally, laser-patterned conductors possess ideal properties for wearable electronics, including strain-insensitivity, nonsmearing behavior, and negligible contact resistance. As proof, we developed wearable electronics integrated with thermally and electromechanically stable components that accurately detect physiological signals in harsh environments, including light exposure, while stretched up to 30%. This work highlights the potential for the development of everyday wearable electronics capable of reliable operation under challenging external conditions, including user-activity-induced stress and sunlight exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...